
The Big Picture:

 Effective theories are like Mom, apple pie...

And the Higgs!
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QCD at nonzero temperature

T ~ 0: effective hadronic models Gallas, Giacosa & Richske, 0907.5084

T → ∞: “perturbative” QCD Andersen, Leganger, Strickland, & Su, 1105.0514 

How to meld the two?

There’s always some effective theory.

Matrix Model of “Semi”-QGP: 
simple, based upon lattice simulations

Moderate coupling. Versus AdS/CFT = strong coupling
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The Little Picture:

Lattice and (resummed) perturbation theory
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Lattice: what you know
“Pure” SU(3), no quarks.  Peak in (e-3p)/T4, just above Tc.  
Borsanyi, Endrodi, Fodor, Katz, & Szabo, 1204.6184

long tail?

↑ Tc 2.5 Tc ↑

e− 3p

T 4
↑
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Lattice: what you should know
Tc→4 Tc:
For pressure, leading
corrections to ideality, T4, 
are not a bag constant, T0,
but ~ T2 - ? Take as given.

e− 3p

T 4

T 2

T 2
c

↑

Borsanyi +... 1204.6184

In 2+1 dim.s, T3 & T2, not T
Caselle +... 1111.0580
Not a gluon “mass”

10 Tc ↑↑ Tc

5Tuesday, July 3, 2012



Moderate coupling, even at Tc

QCD coupling is not so big at Tc, α(2πTc) ~ 0.3 (runs like α(2πT) )
HTL perturbation theory at NNLO: Andersen, Leganger, Strickland, & Su, 1105.0514

Assume: moderate
coupling down to Tc
versus AdS/CFT

e− 3p

T 4

T 2

T 2
c

↑
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The Competition:

Models for the “s”QGP, Tc to ~ 4 Tc

”s” = strong...or...semi?
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Unrelated
Massive gluons: Peshier, Kampfer, Pavlenko, Soff ’96...Castorina, Miller, Satz 1101.1255
                                                                             Castorina, Greco, Jaccarino, Zappala 1105.5902 

p(T ) = #T 4 −m2 T 2 + . . .
Mass decreases pressure, so adjust
m(T) to fit p(T) with three parameters.

Polyakov loops: Fukushima ph/0310121...Hell, Kashiwa, Weise 1104.0572

Veff (T ) ∼ m2�∗� + T log f(�∗�)Effective potential of Polyakov loops.
Potential has five parameters

m2 = T 4
3�

i=0

ai(Tc/T )i

AdS/CFT: Gubser, Nellore 0804.0434...Gursoy, Kiritsis, Mazzanti, Nitti, 0903.2859

Add potential for dilaton, φ, to fit pressure.
Only infinite N, two parameters V (φ) ∼ cosh(γφ) + b φ2
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Related

Linear model of Wilson lines: Vuorinen & Yaffe, ph/0604100; 
   de Forcrand, Kurkela, & Vuorinen, 0801.1566; Zhang, Brauer, Kurkela, & Vuorinen, 1104.0572

Z is not unitary; four parameters.  ‘t Hooft loop approximate.

Above four models, with three, five, two, and four parameters, 
are comparable to a Matrix Model with one free parameter. 

Because (e-3p)/T4 is flat above 1.2 Tc, a very narrow transition region, T < 1.2Tc!
      Like Func. Ren. Group analysis of Schwinger-Dyson eqs.:
         Braun, Gies, Pawlowski, 0708.2413; Marhauser & Pawlowski, 0812.1444;
           Braun, Eichhorn, Gies, & Pawlowski, 1007.2619

      See, also: Borsanyi, Endrodi, Fodor, Katz, & Szabo, 1204.6184
     

Veff (Z) = m2 trZ†Z+ κ (detZ+ c.c.) + λ tr(Z†Z)2 + . . .
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In Matrix Model, very simple ansatz.  Add terms, by hand, to fit the lattice data.  

We do not derive the effective theory from QCD.  Who does:
   Monopoles: Liao & Shuryak, ... + 0804.0255, 1206.3989; Shuryak & Sulejmanpasic, 2012

    Dyons: Diakonov & Petrov, ... + 1011.5636: explain 1st order for SU(N) > 4 & G(2)

   Bions: Unsal + .. + Poppitz, Schaefer, & Unsal 1205.0290: term ~ q(1-q) in SUSY limit

Both semi-QGP & these 3 approaches expand about background classical fields:

Not from 1st principles

                          Semi-QGP:

Monopoles, 
dyons, & bions:

Aa
0(x) =

1

g
qa(x)

A0 =
πT

g
q σ3

A0 is a constant, diagonal 
matrix. Simplest possible 
background field

A0 is a function of space and 
color space.  Must integrate 
over gas of monopoles,
dyons, or bions
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Why is such a simple ansatz ok?

loop vs. eigenvalues
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Order parameter(s) for deconfinement

T→ 
Tc ↑ 

<l>↑

Thermal Wilson line: 

Under global Z(3) rotations:

Wilson line gauge variant.  
Trace = Polyakov loop gauge invariant

Eigenvalues of L are also gauge invariant: 
basic variables of matrix model

〈 loop 〉 measures partial ionization of color:
when 0 < 〈 loop 〉 < 1 , “semi”-QGP

Must model the change in the loop/eigenvalues!

(Confinement in Loop Model: Z(3) symmetry

In Matrix Model: complete eigenvalue repulsion)

L = P eig
� 1/T
0 A0 dτ

L → e2πi/3 L

� =
1

3
trL
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Matrix Model:

Simplest possible model that generates confinement
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Matrix Model: SU(2)
Simple approximation: constant A0 ~ σ3 .
Must have this to model change in loop

For SU(2), single field q  

Z(2) symmetry: q → 1 - q,  L → - L

Perturbative vacua: q = 0 and 1, L = ± 1 

Point halfway in between: q = ½ :
Confined vacuum, Lc, l = 0 .

Acl
0 =

πT

g
q σ3

Wilson line L: Polyakov loop l:

� = cos(πq)L(q) =

�
eiπq 0
0 e−iπq

�

Lc =

�
i 0
0 −i

�
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Perturbative potential for q

One loop order: pert. q-potential (Gross, RDP, & Yaffe, ’81; Weiss ’81)

q →

Vpert(q) ↑

10x x

x

x xx Re l→
q = 0q = 1 q =

1
2

1 -1  0 

Classically, no potential:

Vpert(q) =
4π2

3
T 4 q2(1− q)2
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Non-perturbative potential
By fiat, add non-perturbative q-potentials to generate <q> ≠ 0  and confinement:

T < Tc:  〈q〉 = ½ →
1q →0x x

xVeff (q) ↑

q → 1

T >> Tc:  〈q〉 = 0,1 →

0x x

xVeff (q) ↑

Veff (q) = Vpert(q) + Vnon(q)
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Cartoons of deconfinement

0.2 0.4 0.6 0.8 1.0

�0.015

�0.010

�0.005

⇓ T > Tc: semi QGP

xx

Veff ↑

⇓ T >> Tc: complete QGP

0.2 0.4 0.6 0.8 1.0

0.01
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x x

Veff ↑

q →

q →

0.2 0.4 0.6 0.8 1.0
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�0.05

�0.04

�0.03
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�0.01

                T = Tc  =>

x

q →

Veff = q2(1− q)2− a q(1− q) , a ∼ T 2
c /T

2
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Matrix Models, two colors
Zero parameter model: Meisinger, Miller, & Ogilvie, ph/0108009
1 parameter: Dumitru, Guo, Hidaka, Korthals-Altes, & RDP, 1011.3820; 2 parameter: 1205.0137
Effective potential sum of perturbative and non-perturbative potentials for q:

Vpert(q) =
4π2

3
T 4

�
− 1

20
+ q2(1− q)2

�

Typical mean field theory:

                                         
                                                                         Pressure:
                                                                                                                                    
Start with four parameters: c1, c2, c3, & MIT bag constant B.  
Require: transition at Tc; pressure(Tc) = 0. End up with two free parameters.  

p(T ) = −Veff (�q�)

Vnon(q) =
4π2

3
T 2 T 2

c

�
− c1

5
q(1− q)− c2 q

2(1− q)2 +
c3
15

�
+B T 4

c

d

dq
Veff (q)

����
q=�q�

= 0
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Matrix Model, three colors
Fix two parameters by fitting to latent heat and e-3p:

                                                     c1 = .83 , c2 = .55 , c3 = 1.3 , B = (262 MeV)4 .

1.0 1.5 2.0 2.5 3.0
0.0

0.1

0.2

0.3

0.4

e− 3p

8 T 4
↑

↑ Tc 3Tc ↑T→

 ⇐ Lattice  

 ⇐ 2-parameter 

Lattice:
Beinlich, Peikert, & Karsch lat/9608141
Datta & Gupta 1006.0938
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‘t Hooft loop
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T >> Tc T ~ Tc T < Tc

Lattice, A. Kurkela, unpub.’d: 3 colors, loop l complex.  
Distribution of loop shows Z(3) symmetry:

z

Interface tension: take long box.
Each end: distinct but degenerate 
In between: interface, action ~ interface tension, σ:

T > Tc: order-order interface = ‘t Hooft loop: Z ∼ e−σVtr

Re � ↑

Im � →
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Success: ‘t Hooft loop
Matrix Model works well:
Lattice: de Forcrand, D’Elia, & Pepe, lat/0007034;  de Forcrand & Noth lat/0506005

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.5  2  2.5  3  3.5  4  4.5  5

/T
2  / 

(N
-1

)

T / TC

Lattice data
GKA

model, SU(2)
model, SU(3)

σ

(N − 1)T 2
↑

Semi-classical⇒

 ⇐  N = 2 

 ⇐ matrix model, N = 3

T→

lattice, N=3 ⇒

5 Tc ↑↑ Tc
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Failure: Polyakov loop
Renormalized Polyakov loop from lattice nothing like Matrix Model
Model: transition region narrow, to ~ 1.2 Tc. Lattice: loop wide, to ~ 4.0 Tc.
Does the Matrix Model fail, or...:
                        Does the ren.’d Polyakov loop reflect the eigenvalue distribution?

 ⇐ lattice

 ⇑ 0-parameter

1-parameter ⇓

Lattice: Gupta, Hubner,
and Kaczmarek,  0711.2251.

 0.2

 0.4

 0.6

 0.8

 1

 1  1.1  1.2  1.3  1.4  1.5

〈t
r 

L
/3

〉

T / TC

0-param. model

1-param. model

2-param. model

Lattice

↑ Tc 1.5 Tc ↑T→

��� ↑

 ⇐ 2 parameter
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G(2) gauge group:

Confinement is not due to center symmetry;

the “law” of maximal eigenvalue repulsion
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G(2) group: confinement without a center
Holland, Minkowski, Pepe, & Wiese, lat/0302023...
Exceptional group G(2) has no center, so in principle, no “deconfinement”
With no center, 〈loop7〉 can be nonzero at any T > 0.
Lattice: 1st order transition, 〈l7〉 ~ 0 for T < Tc, 〈l7〉  ≠ 0 for T > Tc: deconfinement!

0.0
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P
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55
60
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80

β = 9.7

T<Tc
T>Tc

←     Tc     →

←<l7>→

Welleghausen, 
Wipf, & Wozar 
1102.1900.

0↑ ↑0.4
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L7 = e2πiqG(2) , qG(2) = (0, q1, q2,−q1 − q2,−q1,−q2, q1 + q2))

Only two parameters, q1 and q2.  
Adjoint = 14 = 3 + 3* + 8. Perturbative potential:

qSU(7) = (0, q1, q2, q3,−q1,−q2,−q3)

By taking q3 = q1 + q2 and permuting the order of the eigenvalues.

Natural SU(3) embedding: fundamental 7 = 1 + 3 + 3* 

G(2): perturbative potential

Looks like a SU(3) gluon potential plus fundamental fields.
Hard to get confinement with G(2) potential: 3 and 3*’s give non-zero loop

qG(2) looks like a special case of SU(7):

V G2
2 = V2(q1) + V2(q2) + V2(q1 + q2)

+V2(q1 − q2) + V2(2q1 + q2) + V2(q1 + 2q2)

V2(q) = q2(1− q)2
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G(2): non-perturbative potentials

To one loop order, perturbative V:

Without Z(N) symmetry, have many possible terms:

All V’s = V(q1,q2).  Generally, 

The VG2’s have the symmetry of the perturbative G(2) term.

The VSU7’s have the symmetry of the SU(7) theory, fixing q3 = q1 + q2.

Note a term ~ loop7 is allowed in the potential, unlike for SU(N).  No center!

Both VSU7 and  loop7 generate eigenvalue repulsion, and so small 〈loop7〉. 

Vpert(q) = π2 T 4

�
−14

45
+ V G2

2 (q1, q2)

�

Vn(q1, q2) =
�

q1,q2

|q|n(1− |q|)n

Vnon(q) = T 2 T 2
c

�
−cG2

1 V G2
1 − cG2

2 V G2
2 − cSU7

1 V SU7
1 − cSU7

2 V SU7
2 − d V �7

2

�
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Law of maximal eigenvalue repulsion

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

! 7

T / TC

Vnpt
SU7, c2

SU7 = -2
Vnpt

SU7, c2
SU7 = -4

Vnpt
G2 , c2

G2 = 0
Vnpt

G2 , d2
G2 = -0.21

Generically, easy to find 1st order transitions.  Most have 〈l7〉 nonzero below Tc.
To get 〈l7〉 ~ 0 below Tc, must add terms to generate maximal eigenvalue repulsion

←Vnon just G(2) terms
←”SU(7)” models

Vnon just loop7 ↓

←”SU(7)” models↑

←Vnon just loop7
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Predictions for G(2)
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-3
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 / 
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SU7, c2
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Vnpt

SU7, c2
SU7 = -4

Vnpt
G2 , c2

G2 = 0
Vnpt

G2 , d2
G2 = -0.21

Vnon just G(2) terms→

←”SU(7)” models

↓ loop7 

Start with model with 3 parameters
Requiring 〈l7〉 ~ 0 below Tc greatly restricts the possible parameters.
Yields dramatic differences in the behavior of (e-3p)/T4.

↓

28Tuesday, July 3, 2012



Beyond pure glue:

heavy quarks and one corner of the Columbia plot

Kashiwa, RDP, & Skokov 1205.0545

29Tuesday, July 3, 2012



Adding heavy quarks

Quarks add to the perturbative q-potential, 

Plus terms ~ e-2m/T Re tr L2, etc.  Quarks act like background Z(3) field.
Heavy quarks wash out deconfinement at deconfining critical endpoint, “DCE”.

For the DCE, first term works to ~ 1% for all quantities.  

Add Vqkpert(q) to the gluon potential, and change nothing else!  Tc the same!

Dumbest thing possible to do.  Different flavors: no problem!

N.B.: Quarks generate v.e.v for 〈loop〉 below Tc, and so become sensitive to
details of pressure in the confined phase.  Have to modify the potential by hand to 
avoid unphysical behavior (negative pressure)

V qk
pert(q) = − tr log( �Dcl +m) ∼ −

√
2

π3/2
T 5/2m3/2 e−m/T Re trL+ . . .
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m
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d 
, G

eV

logarithmic PL

matrix model

polynomial PL

matrix model w/ bag

Predictions for upper right hand corner of Columbia plot
Matrix Model: TDCE ~ 0.99 Tc.  Polyakov loop models: TDCE ~ 0.90 Tc.        

   Mass heavy:  mDCE ~ 2.4 GeV.                 Mass light:  mDCE ~ 1 GeV                         
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Predict two bump structure for three flavors

0 2 4 6 8 10
0

1

2

3

4 matrix model
matrix model w/ B
logarithmic PL
polynomial PL

T / Tde

(ε
-3

p)
/ T

4

For three flavors, Matrix Model gives one bump in (e-3p)/T4 just above TDCE, 
from gluons, plus another at ~ 4 TDCE, from quarks.  Origin trivial, because mDCE 
heavy. Does not happen for log. loop potential, because mDCE light.
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Infinite N:

“Gross-Witten” transition = critical first order

RDP & Skokov 1206.1329
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Gross-Witten transition at infinite N

Solve at N=∞: Find “critical first order” transition:
Latent heat nonzero ~ N2, and specific heat diverges ~ 1/(T-Tc)3/5

Like femtosphere: ... + Aharony... th/0310825; Dumitru, Lenaghan, RDP, ph/0410294

 0
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 0.01

 0.015

 0.02
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 0.03

 0.035

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

V
ef
f

lN
↑ 0 ↑ 1/2��� →

Veff (�) ↑

�(T−
c ) = 0

�(T+
c ) =

1

2

At Tc, 2 degenerate minima

But Veff flat between them!
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Nc=3
Nc=15
Nc=25
Nc=45

c v
/T

3  (N
2 -1

)

10

20

30

40

50

T/Tc
1.000 1.001 1.002

Signs of Gross-Witten transition at finite N?

See increase in specific heat only very near Tc, ~ .1 %, for very large N > 40

T/Tc→

Cv

N2T 3
↑
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Summary

“Miles to go, before I sleep...”

RDP & Skokov, Lin, Rischke +....
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Pure gauge: T: 1.2 to 4.0 Tc, pressure dominated by constant ~ T2 : stringy?

Tests: discrepancy with Polyakov loop; heavy quarks; large N

Need to include quarks!  Is there a single “Tc”?

Standard kinetic theory: strong coupling gives small η and large 
             Majumder, Muller, & Wang, ph/0703082; Liao & Shuryak, 0810.4116

Semi-QGP: naturally small η near Tc: 
σ ~ loop2, but ρ = density ~ loop2 T3:
Y. Hidaka & RDP, 0803.0453, 0906.1751, 0907.4609, 0912.0940:

(Relation to anomalous viscosity? Asakawa, Bass, & Muller, ph/0603092 & ph/0608270) 

But energy loss also small:                 for quarks   

η ∼ ρ2

σ
∼ �2

�q

�q ∼ �
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HISQ/tree: N =6
N =8

N =12
stout, cont.

SU(3)
SU(2)

Loop with, and without, quarks

Bazavov &
Petreczky, 
1110.2160

Matrix Model: use same Tc with quarks.  Loop turns on below Tc.
Chiral transition is not tied to deconfinement.  Like lattice results:

                   Lattice ⇒
SU(3) with quarks 

⇐ Lattice, 
    SU(2) with no quarks

 ⇐ Lattice,
      SU(3) with no quarks

T→

<loop>↑

↓TcSU(2)TcSU(3)↓

TchiralQCD↑
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